Control of Diesel Particulate Matter
Exposures in Underground Stone Mines in the United States

Lansdowne Resort
Leesburg, Virginia
September 25 – 26, 2008
• History and background
• Regulation
• DPM Controls
• Compliance history
Rudolf Diesel
1858 - 1913

Diesel engine patented in Germany by Rudolf Diesel in 1892
Diesel engines are the workhorses of underground metal and nonmetal mining.

- 190 Mines
- 8,000 Diesel Units
Diesel engines are the workhorses of underground metal and nonmetal mining.

190 Mines

8,000 Diesel Units

\[\bar{x} = 42 \text{ units/mine} \]
Diesel Particulate Matter (DPM) consists of:

- Solids, liquids, and vapors;
- Burned and unburned hydrocarbons; fuel, lube oil;
- Oxides of sulfur, nitrogen;
- Metal fragments, metal oxides, acids, salts, ash, other substances

2,000+ identified compounds

- Nucleation mode – 5 to 50 nm
- Agglomeration mode – 50 nm to 1 µm
Health Effects of DPM

- Due to particle size, DPM particles are respirable in size
 - Can reach the deep lung (alveoli)
Health Effects of DPM

- Principal adverse health effects
 - Sensory irritations and respiratory symptoms serious enough to distract or disable miners
 - Immunologic effects (allergenic responses and asthma-like symptoms)
 - Premature death from cardiovascular, cardiopulmonary, or respiratory causes
 - Lung cancer
Many agencies and organizations regard DPM as hazardous to human health.

<table>
<thead>
<tr>
<th>Year</th>
<th>Organization</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>US EPA</td>
<td>Likely human carcinogen</td>
</tr>
<tr>
<td>2001</td>
<td>ACGIH (proposal)</td>
<td>Suspected human carcinogen</td>
</tr>
<tr>
<td>2001</td>
<td>US Dept of HHS</td>
<td>Reasonably anticipated to be a human carcinogen</td>
</tr>
<tr>
<td>1998</td>
<td>CARB</td>
<td>Toxic air contaminant</td>
</tr>
<tr>
<td>1996</td>
<td>World Health Org</td>
<td>Probable human carcinogen</td>
</tr>
<tr>
<td>1989</td>
<td>IARC</td>
<td>Probable human carcinogen</td>
</tr>
<tr>
<td>1988</td>
<td>NIOSH</td>
<td>Potential occupational carcinogen</td>
</tr>
</tbody>
</table>
MSHA Rulemaking Background and Timeline

1960’s to present DPM epidemiological and occupational exposure studies

1980’s Interagency task forces evaluated DPM health risks, DPM sampling, and DPM control technologies

Mid-1990’s MSHA DPM rulemaking initiated

October 1998 MSHA issues Proposed Rule

January 2001 MSHA issues Final Rule

- DPM limit phased in over 5 years
 - Total Carbon surrogate for DPM
 - Interim Limit of $400_{TC} \mu g/m^3$; Final Limit of $160_{TC} \mu g/m^3$
 - Control of exposures by engineering or work practices
- Special Extensions to Final Limit
- Overexposure prompts requirement for Control Plan
- “Best Practice” standards for fuel, maintenance, engines, training, and recordkeeping
MSHA Rulemaking Background and Timeline

January 2001 Legal challenges to Final Rule; USWA intervenes in litigation

February 2001 Parties agree to negotiations

July 2001 Enforcement of “Best Practice” standards (fuel, maintenance, engines, etc.)

July 2003 Enforcement of Interim DPM Limit

June 2005 Final Rule creates interim permissible exposure limit (PEL), other changes

May 2006 Final Rule creates 3-step Final DPM PEL, changes to PPE and Special Extensions

February 2007 US Court of Appeals upholds DPM Final Rules
Current MSHA MNM DPM Rule

- Permissible exposure limit (PEL) of $160_{TC} \mu g/m^3$ (shift weighted average full shift personal sample, analyzed per NIOSH method 5040)
- Mine operators may apply for Special Extension of the PEL based on technological or economic infeasibility (1 year duration, renewable)
- Exposures controlled via engineering and/or administrative means. If compliance infeasible using engr/admin controls alone, supplemental respiratory protection required
 - Respiratory protection program, medical evaluations
 - Medical transfers with pay retention
 - Job rotation **not allowed** as a means of compliance
Current MSHA MNM DPM Rule

- Low sulfur (500 ppm) fuel required and fuel additives must be registered with US EPA
- Engine maintenance
 - Approved engines in approved condition
 - Emission-related components to manufacturers’ spec
 - Emission controls in effective operating condition
 - Maintenance tagging
 - Mechanic qualifications
- Engines either Approved or meet EPA PM limits
- DPM training annually
- DPM exposure monitoring
- DPM recordkeeping
DPM Regulations Outside the US

EU Member States

- Engine emission standards similar to US EPA
- Occupational exposure limits (OEL) established on state-by-state basis
- Germany - $300_{EC} \, \mu g/m^3$ for tunneling/non-coal mining
 - diesel particulate filters mandatory

Non-EU European states

- Switzerland - Engine emissions based on EU limits
 - OEL of $100_{EC} \, \mu g/m^3$ for mining/tunneling
 - diesel particulate filters mandatory

Canada

- Engine emission standards harmonized with US EPA
- Several Provinces have adopted 1.5 mg/m3 (RCD)
US EPA vs. EU Non-Road Diesel Engine Emission Standards

<table>
<thead>
<tr>
<th>HP</th>
<th>US EPA (Tiers 2, 3, and 4)</th>
<th>EU (Stages III and IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-75</td>
<td>0.22 (2008) 0.022 (2013)</td>
<td>19-37 0.45 (2007)</td>
</tr>
<tr>
<td>50-100</td>
<td>0.30 (2004)</td>
<td>37-75 0.30 (2008)</td>
</tr>
<tr>
<td>50-75</td>
<td>0.22 (2008) 0.022 (2013)</td>
<td>37-56 0.019 (2013)</td>
</tr>
<tr>
<td>100-175</td>
<td>0.22 (2003)</td>
<td>75-130 0.22 (2007)</td>
</tr>
<tr>
<td>75-175</td>
<td>0.015 (2012)</td>
<td>56-130 0.019 (2012)</td>
</tr>
<tr>
<td>175-750</td>
<td>0.15 (2001-2003) 0.015 (2011)</td>
<td>130-560 0.15 (2006) 0.019 (2011)</td>
</tr>
</tbody>
</table>
Available Control Strategies

1. Ventilation
2. Environmental Cabs
3. Administrative Controls
4. Diesel Engines
5. Engine Maintenance
6. Biodiesel Fuel
7. DPM Exhaust Filters
Available Control Strategies

1. Ventilation
2. Environmental Cabs
3. Administrative Controls
4. Diesel Engines
5. Engine Maintenance
6. Biodiesel Fuel
7. DPM Exhaust Filters
Available Control Strategies

1. Ventilation
2. Environmental Cabs
3. Administrative Controls
4. Diesel Engines
5. Engine Maintenance
6. Biodiesel Fuel
7. DPM Exhaust Filters

Emission Reduction
Exposure Controls
Available Control Strategies

1. Ventilation
2. Environmental Cabs
3. Administrative Controls
4. Diesel Engines
5. Engine Maintenance
6. Biodiesel Fuel
7. DPM Exhaust Filters

Most MNM mines were able to attain consistent compliance with Interim DPM PEL
Available Control Strategies

1. Ventilation
2. Environmental Cabs
3. Administrative Controls
4. Diesel Engines
5. Engine Maintenance
6. Biodiesel Fuel
7. DPM Exhaust Filters

Most MNM mines were able to attain consistent compliance with Interim DPM PEL.

Additional controls will be needed at many mines to meet Final DPM PEL.
Available Control Strategies

1. Ventilation
2. Environmental Cabs
3. Administrative Controls
4. Diesel Engines
5. Engine Maintenance
6. Biodiesel Fuel
7. DPM Exhaust Filters

Almost all mines will require a combination of controls to attain compliance.
Effectiveness of DPM Controls

- Ventilation – DPM reduction depends on nature of upgrade - improvement roughly proportional to airflow increase
 - Doubling airflow *could* cut DPM conc. 50%

- Environmental cabs 50 - 80% reduction
 - 800 µg/m³ reduced to 400 - 160 µg/m³ in cab
 - Some workers *can’t* work inside cab

- Administrative or work practice controls - DPM reduction depends on mine conditions and work practices employed
Effectiveness of DPM Controls

- Low emission engines - effect depends on engines - 95+% reduction possible
 - Example: Pre-”Tier” engine replaced by Tier 2 engine could reduce DPM up to 95%
 - 800 µg/m³ reduced to 40 µg/m³
 - Reductions of 25% to 40% more typical

- Engine maintenance – depends on many factors - results vary widely
 - A few mine operators have implemented “emissions-based maintenance”
Effectiveness of DPM Controls

- Alternate fuels - effect depends on fuel blend, engines, etc. - results vary
 - 50% bio-diesel fuel reduces DPM 20-40%
 - 800 µg/m³ reduced to 640 µg/m³ to 480 µg/m³
 - 100% biodiesel fuel reduces DPM 50-80%
 - 800 µg/m³ reduced to 400 µg/m³ to 160 µg/m³
 - OCC recommended to reduce OC
- DPM exhaust filters - 80 to 99% efficient
 - 80% efficiency reduces 800 µg/m³ to 160 µg/m³
 - 99% efficiency reduces 800 µg/m³ to 8 µg/m³
Summary Comparison of DPM Controls

<table>
<thead>
<tr>
<th>Environ</th>
<th>Clean</th>
<th>B100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cab</td>
<td>Engines</td>
<td>Fuel</td>
</tr>
</tbody>
</table>

Maximum EC Reduction (pct)

- Q 50%
- Environ Cab
- Clean Engines
- B100 Fuel
- DPM Filters
MSHA Compliance Sampling
Comparing Results From ’03-’04 to ’07-’08

<table>
<thead>
<tr>
<th>Total Carbon Concentration</th>
<th>July ‘03 to July ‘04 N = 811</th>
<th>May ‘07 to May ‘08 N = 608</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 µg/m³</td>
<td>28.1%</td>
<td>44.6%</td>
</tr>
<tr>
<td>< 200 µg/m³</td>
<td>55.7%</td>
<td>71.8%</td>
</tr>
<tr>
<td>< 300 µg/m³</td>
<td>73.1%</td>
<td>86.3%</td>
</tr>
<tr>
<td>> 400 µg/m³</td>
<td>15.6% (49 mines)</td>
<td>8.1% (29 mines)</td>
</tr>
<tr>
<td>> 600 µg/m³</td>
<td>5.1% (25 mines)</td>
<td>3.6% (12 mines)</td>
</tr>
</tbody>
</table>
Bill Pomroy
MSHA – MNM
North Central District
515 W. First St.
Duluth, MN 55802-1302
218-720-5448
pomroy.william@DOL.GOV
Thank You